首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   6篇
  2022年   2篇
  2021年   13篇
  2020年   16篇
  2019年   11篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   8篇
  2012年   16篇
  2011年   13篇
  2010年   4篇
  2009年   7篇
  2008年   8篇
  2007年   13篇
  2006年   5篇
  2005年   13篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1991年   3篇
  1990年   1篇
  1974年   1篇
排序方式: 共有184条查询结果,搜索用时 906 毫秒
81.
Diversification of insect herbivores is often associated with coevolution between plant toxins and insect countermeasures, resulting in a specificity that restricts host plant shifts. Gall inducers, however, bypass plant toxins and the factors influencing host plant associations in these specialized herbivores remain unclear. We reconstructed the evolution of host plant associations in Western Palaearctic oak gallwasps (Cynipidae: Cynipini), a species-rich lineage of specialist herbivores on oak ( Quercus ). (1) Bayesian analyses of sequence data for three genes revealed extreme host plant conservatism, with inferred shifts between major oak lineages (sections Cerris and Quercus ) closely matching the minimum required to explain observed diversity. It thus appears that the coevolutionary demands of gall induction constrain host plant shifts, both in cases of mutualism (e.g., fig wasps, yucca moths) and parasitism (oak gallwasps). (2) Shifts between oak sections occurred independently in sexual and asexual generations of the gallwasp lifecycle, implying that these can evolve independently. (3) Western Palaearctic gallwasps associated with sections Cerris and Quercus diverged at least 20 million years ago (mya), prior to the arrival of oaks in the Western Palaearctic from Asia 5–7 mya. This implies an Asian origin for Western Palaearctic gallwasps, with independent westwards range expansion by multiple lineages.  相似文献   
82.
Biological Trace Element Research - Gaucher disease (GD) is most frequent disorder of glycolipid storage. The glucosylceramide accumulation might lead to oxidative stress and changes in lipid...  相似文献   
83.
84.
Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a composite cantilever comprising of piezoelectric and magnetostrictive materials, and a permanent magnetic tip mass. However, this harvester architecture limits power generation because volume of the magnetic end mass is closely coupled with the resonance frequency of the device structure. Here, a method is demonstrated for maintaining the resonance frequency of the MME harvesters under all operating conditions (e.g., 60 Hz, standard frequency of electricity in many countries) while simultaneously enhancing the output power generation. By distributing the magnetic mass over the beam, the output power of the harvester is significantly enhanced at a constant resonance frequency. The MME harvester with distributed forcing shows 280% improvement in the power generation compared with a traditional architecture. The generated power is shown to be sufficient to power eight different onboard sensors with wireless data transmission integrated on a drone. These results demonstrate the promise of MME energy harvesters for powering wireless communication and IoT sensors.  相似文献   
85.

Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat’s SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.

  相似文献   
86.
87.
The Charipinae are a major group of hyperparasitoids of Hemiptera. Here, we present the first cladistic analysis of this subfamily's internal relationships, based on 96 morphological characters of adults. The data matrix was analysed using uniformly weighted parsimony. The effects of using alternative weighting schemes were explored by performing additional searches employing implied weights criteria. One of the caveats of implied weights analysis is that it lacks an objective criterion for selecting the value of the concavity function. In the present study, differential weighting was used to explore the sensitivity of our results to the alternative assumptions made in the analysis and to select one of the most parsimonious trees under equal weights, which we regard as being the hypothesis that minimizes the amount of ad hoc assumptions. The validity of the two existing tribes and the monophyly of all the genera of Charipinae were tested, in particular the cosmopolitan and highly species-rich Alloxysta and Phaenoglyphis , which appear repeatedly in ecological and biochemical studies of host–parasitoid associations. The evolution of several major characters and the relationships between genera are discussed. On the basis of the phylogenetic results, we discuss a number of taxonomic issues. A new classification of the subfamily is proposed in which no tribes are maintained, Carvercharips is synonymyzed with Alloxysta , and the creation of a new genus from Nepal is justified. Our analysis points to the need for a world revision of the basal genus Phaenoglyphis , which is shown as paraphyletic.  相似文献   
88.
89.

Background

This study aims to differentiate human induced pluripotent stem cells (hiPSCs) into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats.

Methodology/Principal Findings

We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination of factors, positive selection and mechanical enrichment. Real-time polymerase chain reaction and immunofluorescence analyses showed that stage-specific markers, Olig2, Sox10, NG2, PDGFRα, O4, A2B5, GalC, and MBP were expressed following the differentiation procedure, and enrichment of the oligodendrocyte lineage. These results are comparable with the expression of stage-specific markers in human embryonic stem cell-derived oligodendrocyte lineage cells. Transplantation of hiPSC-derived oligodendrocyte progenitors into the lysolecithin-induced demyelinated optic chiasm of the rat model resulted in recovery from symptoms, and integration and differentiation into oligodendrocytes were detected by immunohistofluorescence staining against PLP and MBP, and measurements of the visual evoked potentials.

Conclusions/Significance

These results showed that oligodendrocyte progenitors generated efficiently from hiPSCs can be used in future biomedical studies once safety issues have been overcome.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号